Silicon is a fourfold coordinated atom that is normally tetrahedrally bonded to four neighboring silicon atoms. In crystalline silicon (c-Si) this tetrahedral structure continues over a large range, thus forming a well-ordered crystal lattice.
In amorphous silicon this long range order is not present. Rather, the atoms form a continuous random network. Moreover, not all the atoms within amorphous silicon are fourfold coordinated. Due to the disordered nature of the material some atoms have a dangling bond. Physically, these dangling bonds represent defects in the continuous random network and may cause anomalous electrical behavior.
Increasing concentrations of carbon in the alloy widen the electronic gap between conduction and valence bands (also called "optical gap" and bandgap). This can potentially increase the light efficiency of solar cells made with amorphous silicon carbide layers. On the other hand, the electronic properties as a semiconductor (mainly electron mobility), are adversely affected by the increasing content of carbon in the alloy, due to the increased disorder in the atomic network.
One further advantage is that a-Si can be deposited at very low temperatures, e.g., as low as 75 degrees Celsius. This allows for deposition on not only glass, but plastic as well, making it a candidate for a roll-to-roll processing technique. Once deposited, a-Si can be doped in a fashion similar to c-Si, to form p-type or n-type layers and ultimately to form electronic devices.
of amorphous silicon dioxide,
Amorphous silicon solar
of amorphous silicon films
of amorphous silicon.
on Amorphous Silicon Oxide
in the amorphous silicon
in amorphous silicon
of amorphous silicon and
the amorphous silicon
WWW model of amorphous Si,
Illustration of the silicon
of the amorphous silicon
amorphous silicon solar panels
cell structure
Amorphous silicon\x26#39;s random
silicon structure,
In amorphous silicon this long range order is not present. Rather, the atoms form a continuous random network. Moreover, not all the atoms within amorphous silicon are fourfold coordinated. Due to the disordered nature of the material some atoms have a dangling bond. Physically, these dangling bonds represent defects in the continuous random network and may cause anomalous electrical behavior.
Increasing concentrations of carbon in the alloy widen the electronic gap between conduction and valence bands (also called "optical gap" and bandgap). This can potentially increase the light efficiency of solar cells made with amorphous silicon carbide layers. On the other hand, the electronic properties as a semiconductor (mainly electron mobility), are adversely affected by the increasing content of carbon in the alloy, due to the increased disorder in the atomic network.
One further advantage is that a-Si can be deposited at very low temperatures, e.g., as low as 75 degrees Celsius. This allows for deposition on not only glass, but plastic as well, making it a candidate for a roll-to-roll processing technique. Once deposited, a-Si can be doped in a fashion similar to c-Si, to form p-type or n-type layers and ultimately to form electronic devices.
of amorphous silicon dioxide,
Amorphous silicon solar
of amorphous silicon films
of amorphous silicon.
on Amorphous Silicon Oxide
in the amorphous silicon
in amorphous silicon
of amorphous silicon and
the amorphous silicon
WWW model of amorphous Si,
Illustration of the silicon
of the amorphous silicon
amorphous silicon solar panels
cell structure
Amorphous silicon\x26#39;s random
silicon structure,
No comments:
Post a Comment