Wednesday, October 19, 2011

Bcs Theory Of Superconductivity

##title##
The mid-1950s saw rapid progress in the understanding of superconductivity. It began in the 1948 paper, On the Problem of the Molecular Theory of Superconductivity where Fritz London proposed that the phenomenological London equations may be consequences of the coherence of a quantum state. In 1953, Brian Pippard, motivated by penetration experiments, proposed that this would modify the London equations via a new scale parameter called the coherence length. John Bardeen then argued in the 1955 paper, Theory of the Meissner Effect in Superconductors that such a modification naturally occurs in a theory with an energy gap. The key ingredient was Leon Neil Cooper's calculation of the bound states of electrons subject to an attractive force in his 1956 paper, Bound Electron Pairs in a Degenerate Fermi Gas.

In 1957 Bardeen and Cooper assembled these ingredients and constructed such a theory, the BCS theory, with Robert Schrieffer. The theory was first announced in February 1957 in the letter, Microscopic theory of superconductivity. The demonstration that the phase transition is second order, that it reproduces the Meissner effect and the calculations of specific heats and penetration depths appeared in the July 1957 article, Theory of superconductivity. They received the Nobel Prize in Physics in 1972 for this theory. The 1950 Landau-Ginzburg theory of superconductivity is not cited in either of the BCS papers.

In 1986, "high-temperature superconductivity" was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that BCS theory alone cannot explain this phenomenon and that other effects are at play.[citation needed] These effects are still not yet fully understood; it is even possible that they also control superconductivity even at low temperatures for some materials.

At sufficiently low temperatures, electrons near the Fermi surface become unstable against the formation of Cooper pairs. Cooper showed such binding will occur in the presence of an attractive potential, no matter how weak. In conventional superconductors, an attraction is generally attributed to an electron-lattice interaction. The BCS theory, however, requires only that the potential be attractive, regardless of its origin. In the BCS framework, superconductivity is a macroscopic effect which results from "condensation" of Cooper pairs. These have some bosonic properties, while bosons, at sufficiently low temperature, can form a large Bose-Einstein condensate. Superconductivity was simultaneously explained by Nikolay Bogoliubov, by means of the so-called Bogoliubov transformations.


of the BCS theory of


supports the BCS theory


This BCS theory prediction of


BCS


Why is BCS theory unable to

In many superconductors, the attractive interaction between electrons (necessary for pairing) is brought about indirectly by the interaction between the electrons and the vibrating crystal lattice (the phonons). Roughly speaking the picture is the following:

BCS guys


The BCS Theory of


Superconductivity Navigator


1911: Superconductivity with


BCS Theory of

An electron moving through a conductor will attract nearby positive charges in the lattice. This deformation of the lattice causes another electron, with opposite "spin", to move into the region of higher positive charge density. The two electrons then become correlated. There are a lot of such electron pairs in a superconductor, so that they overlap very strongly, forming a highly collective "condensate". Breaking of one pair results in changing of energies of remained macroscopic number of pairs. If the required energy is higher than the energy provided by kicks from oscillating atoms in the conductor (which is true at low temperatures), then the electrons will stay paired and resist all kicks, thus not experiencing resistance. Thus, the collective behaviour of "condensate" is a crucial ingredient of superconductivity.
BCS theory starts from the assumption that there is some attraction between electrons, which can overcome the Coulomb repulsion. In most materials (in low temperature superconductors), this attraction is brought about indirectly by the coupling of electrons to the crystal lattice (as explained above). However, the results of BCS theory do not depend on the origin of the attractive interaction. The original results of BCS (discussed below) described an "s-wave" superconducting state, which is the rule among low-temperature superconductors but is not realized in many "unconventional superconductors", such as the "d-wave" high-temperature superconductors. Extensions of BCS theory exist to describe these other cases, although they are insufficient to completely describe the observed features of high-temperature superconductivity.

1957 - BCS theory of


Pairs and the BCS Theory


Superconductivity (page 5)


years of the BCS Theory of


BCS theory

BCS is able to give an approximation for the quantum-mechanical many-body state of the system of (attractively interacting) electrons inside the metal. This state is now known as the "BCS state". In the normal state of a metal, electrons move independently, whereas in the BCS state, they are bound into "Cooper pairs" by the attractive interaction. The BCS formalism is based on the "reduced" potential for the electrons attraction. Within this potential, a variational ansatz for the wave function is proposed. This ansatz was later shown to be exact in the dense limit of pairs. Note that the continuous crossover between the dilute and dense regimes of attracting pairs of fermions is still an open problem, which now attracts a lot of attention within the field of ultracold gases. BCS derived several important theoretical predictions that are independent of the details of the interaction, since the quantitative predictions mentioned below hold for any sufficiently weak attraction between the electrons and this last condition is fulfilled for many low temperature superconductors - the so-called "weak-coupling case". These have been confirmed in numerous experiments:

called the BCS-theory


BCS Theory of


In 1957, the BCS theory


BCS Theory of


BCS

No comments:

Post a Comment

 
coompax-digital magazine